Print	ed Pa	age:-03 Subject Code:- AMTCSE0201	Subject Code:- AMTCSE0201							
	•	Roll. No:								
NC	OIDA	A INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER	NOIL	A						
	(An Autonomous Institute Affiliated to AKTU, Lucknow)									
		M.Tech SEM: II - THEORY EXAMINATION (2024 - 2025)								
		Subject: High Performance Computing								
Tim	ne: 3 I	Hours Max.	Mark	s: 70						
Gene	ral In	instructions:								
		ify that you have received the question paper with the correct course, code, b								
	_	nestion paper comprises of three Sections -A, B, & C. It consists of Multiple (MCO's) & Subjective type questions	Choice	?						
		(MCQ's) & Subjective type questions. In marks for each question are indicated on right -hand side of each question	1							
		te your answers with neat sketches wherever necessary.								
		suitable data if necessary.								
	•	bly, write the answers in sequential order.								
		et should be left blank. Any written material after a blank sheet will not be								
evalu	ated/c	/checked.								
SECT	TION.	NI_A		15						
				13						
	cmpt i T	r all parts:- Pipe-lining is a unique feature of (CO1 K1) 1. RISC		1						
1-a.	ŀ	Pipe-lining is a unique feature of (CO1 K1)		1						
	(b)									
	(c)									
	(d)									
1-b.	Ir	In the Pipelined Execution, steps contain (CO2 K1)		1						
	(a)	1. normalization								
	(b)	2. communication								
	(c)	3. elimination								
	(d)	4.all								
1-c.	_	algorithms use a heuristic to guide search. (CO3 K1)		1						
	(a)	1. BFS								
	(b)	2. DFS								
	(c)	3. BFS and DFS								
	(d)	4. none of above								
1-d.	I-d. In most of the cases, topological sort starts from a node which has (CO4 K1)									
	(a)	1. Maximum Degree								
	(b)	-								

	(c)	3. Any degree	
	(d)	4.Zero Degree	
1-e.		Multithreading allowing multiple-threads for sharing the functional units of a (CO5 K1)	
	(a)	1. Multiple processor	
	(b)	2. Single processor	
	(c)	3. Dual core	
	(d)	4.Corei5	
2. Att	empt a	ıll parts:-	
2.a.	D	efine the Data parallel method. (CO1 K1)	2
2.b.	E	xplain the Master slave relationship. (CO2 K1)	2
2.c.	D	iscuss NUMA with suitable example. (CO3 K2)	2
2.d.	E	xplain concurrency with suitable example. (CO4 K3)	2
2.e.	D	escribe the disk-usage. (CO5 K2)	2
SEC.	ΓΙΟΝ-	<u>B</u>	20
3. An	swer a	ny <u>five</u> of the following:-	
3-a.	D	Iscuss network with its types also discuss suitable example. (CO1 K3)	4
3-b.	E: K	xplain basic working principle of VLIW Processor with suitable diagram. (CO1 3)	4
3-c.	D	efine the shared-memory multi processors with suitable example. (CO2 K1)	4
3-d.	E	xplore vector processing with suitable example. (CO2 K3)	4
3.e.	D	iscuss AVL tree explain it with an example. (CO3 K3)	4
3.f.		explain the Scheduling with suitable example. also list out the types of chedulers. (CO4 K3)	4
3.g.	E	xplore performance with suitable examples also discuss its value. (CO5 K3)	4
SEC.	ΓΙΟΝ-	<u>C</u>	35
4. An	swer a	ny <u>one</u> of the following:-	
4-a.	E	xplain the dataflow model with suitable examples and diagram. (CO1 K3)	7
4-b.	E	xplore Multithread Architecture with suitable example. (CO1 K3)	7
5. An	swer a	ny <u>one</u> of the following:-	
5-a.		rite down the steps in the vector instruction format also explain every step in etails. (CO2 K3)	7
5-b.	D	iscuss the super computer with suitable example. (CO2 K3)	7
6. An	swer a	ny <u>one</u> of the following:-	
6-a.	E	xplain the working of Irvine data flow computer. (CO3 K3)	7
6-b.		iscuss various applications of Parallel Computing with suitable real time tample. (CO3 K2)	7

/. Answe	r any one of the following:-	
7-a.	Explore Task-dependency graph with suitable example. (CO4 K3)	7
7-b.	Explain SPMD and its I/O & file systems. (CO4 K3)	7
8. Answe	r any one of the following:-	
8-a.	Describe processor architecture in details also explain Flynn's taxonomy. (CO5 K3)	7
8-b.	Explain IBM CELL BE architecture with the help of diagram. (CO5 K3)	7

